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Abstract. The rich dmmion structures for a (2 + 1)-dimensional ~ d v  equation are revealed. 
The dmmians in a high dimensional integrable model may have a free shape in one or more 
directions. Multi-dromion solutions can be driven by perpendicular line. non-perpendicular line 
and curved line ghost solitons. 

Recently, much progress in understanding the properties of high-dimensional integrable 
models has been achieved [l]. One of the most important properties is that exponentially 
localized structures, called dromions, which are driven by two perpendicular line ghost 
solitons in the case of the Davey-Stewartson (Ds) equation [2]  or two non-perpendicular 
line ghost solitons in the case~of the Kadomtsev-Petviashvili~ (KP) equation [3], have been 
found. On the other hand, we also know~that for higher dimensional integrable models, many 
(or even infinitely many) arbitrary functions can be included in their symmetry structures 
[ G I .  This means some arbitrary functions can be included in the exact solutions of the 
higher dimensional integrable models. In this paper, we would like to study the dromion 
structure in more generalized form for the following (2  + I)-dimensional K ~ V  equation 

(1) 
Equation (1) was originally derived by using the idea of the weak Lax pair [7,8] and it 
reduces to the usual (1 + 1)-dimensional KdV equation in the case of y = x .  In [8], the 
authors pointed out that the solutions of equation (1) and its potential 

uI + uxXx = ~(u~;’uJ,. 

(2)  1 = a; 
can all be obtained from the bilinear form 

( D , D ! + D : D y ) 9 . 9 = 0  (3) 
with 

= -28 a , I n +  U = -2a,a, In$ (4) 

In order to get solutions of (3), we expand $J in the form of a power series of a small 
where D is the standard Hirota bilinear operator [9] .  

parameter 
,$ = 1 + @ ( I )  + ,(%p + . . . , (5) 
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Substituting equation (5) into (3) yields a set of linear equations: 

&) + &iY = 0 (6) 
(7) 4:) + &iY = -i(D,D, + D p J p .  $(I) 

$(I) = c exp(6j) 

etc. In [81, Radha and Lakshmanan (RL) studied the solutions of (6) in the form: 
N 

(8) 

In order to obtain further information about the dromion solutions of the (2+ 1)-dimensional 
KdV equation (11, we can write a special solution of (6) in the following form 

tj = kjx + Ijy - k,?t + tj (0) . 
j = I  

N 

4“) = c[exP(kj(Y)x - k , ? W  + gj(Y)) + hj(x. t)l (9) 

where kj(y) and gj(y) are arbitrary functions of y and hj(x, t) is an arbitrary function of 
{ x ,  2 ) .  Similarly, the solutions @(j) for all j > 2 can be obtained by solving equation (7) 
etc recursively. 

To obtain ‘single’ soliton~solution we select N = 1 in (9) and substitute it into 
equation (7) etc. The result tells us that if we choose k l  as a constant and hl as a solution 
of the following linear equation 

(10) 
then r$(j) for j 2 2 can all be selected as zero. 

j=l 

hi + h,, + 3k:h, - 3k1h,, = 0 

Mer solving equation (IO), we get a generalized real solution of (3): 
M N 

= 1 + expt  + Aj expqj + BjsinBj expCj (11) 
j= l  j=l 

5 = klx - k:t + g(y) qj  = Rjx - (R; + 3k:Rj - 3klR;)t 

ej = Pjx + (Pj’ - 3PjQ; - 3k:Pj + 6klP1Qj)t +e,?) 
Cj = Q ~ x + ( - Q , ’ + ~ P ~ Q ~ - ~ ~ I P ~ + ~ ~ I Q ~ ) ~  (12) 

where kl, Aj, Rj, 5. Qj, Bj. and are all arbitrary constants and g(y) is an arbitrary 
function of y. The corresponding forms for the’field U and the potential U can be obtained 
by substituting (11) into (4): 

M N 

j = I  j=I 
u =-2g’(y)exp$ - R j ) e x p q l + ~ B j ( k l  - Qj)sin0jexp<j 

) 
N 

- B~ pj cos e, exp cj 
j=1  

M N 

x[  (1 + expe + A,-expqj + Bj sinOjexppljr]-l 
j=l j=l 

(13) 
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where a prime means a derivative with respect to y. To understand the meaning of solutions 
(13) and (14), we first discuss some special cases: 

~~ Generalized dromion solutions 

(i) Single curve soliton for the potential U. If we choose 

(15) A .  - B.  - 
I -  1-0 

equation (14) reduces to 

U = -$k:sech'$(kIx - k:t +g(y)). 

kix - k:t + g(y) = 0 

(16) 

(17) 
and decays exponentially apart from the curve. Hereafter we call this type of soliton a 
curve soliton (or curved line soliton) and call a solution which is finite on a straight line 
and decays apart from the line a line (or straight line) soliton. 

Obviously, U shown by equation (16) is finite on the curve 

Under the same condition (15). the structure of soliton (13) for the field U 

U = -fklg'(y)sech2i(klx - k:t + g(y)) (18) 
is much more abundant: 

(ii) Single dromion driven by one line soliton (parallel to the x-axis) and one curve 
soliton. If g'(y) is fixed as a single line soliton which is parallel to the x-axis, and we 
combine the line soliton g'(y) and curve soliton sech'(k1x - k:t + g(y)) together properly 
(i.e. multiply them together simply in the case of equation (18)), the original straight line 
and curved line solitons disappear (become ghosts) and only a single peak which is localized 
in all directions (called a dromion) survives. The dromion is located at the intersection of 
the line and curve solitons. Because g(y) is an arbitrary function of y, the single dromion 
still possesses rich structures. Here are three concrete simple examples: 

u1 = fkl sechn(y - yo) sech' 

(19) 

) klx - k:t - sech"(y1 - yo) dy, ( S' 
z fklhl(y)sech' f sech"(y1 -yo) dyl 

I 
u2 = 5k1 sech"(cosh(y - yo)  - I )  sech' f sech"(cosh(y1 - yo) - l)dyl 

z $klhX(y) sech' f sech"(cosh(yl - yo) - 1) dyl 

dy 1) 
1 

ug = fkl(y - yo)" + lsech' $ 

= fklhO(y) sech' $ 1 dYl). 

The first type of dromion solution. U!, decays exponentially in all directions. The second 
type of dromion solution, U', decays much more quickly than the first in the y direction. 
While the third type of dromion solution, U), decays much slower than the first in the y 
direction. 

(iii) Multi-dromion 'bounded' states. If g'(y) is selected as N parallel line solitons 
(parallel to the x-axis) under condition (E), then we obtain an N-dromion 'bound' state, 
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driven by N line ghost solitons and one curved line ghost soliton. In equation (22), h(y) 
can be selected quite freely, say hl ,  h2, h3 shown in equations (19)-(21). Because all N 
parallel line solitons are static in the y direction, the N-dromions can only move with the 
same speed in the x direction as the curved line ghost soliton moves and they cannot pass 
through each other. In other words, the behaviour of these dromions looks like a bound 
state. 

(iv) Interacting and waving multi-dromions. If we select g'(y) as an N I  line soliton 
solution and remove condition (15), then solution (13) reveals an interacting waving dromion 
structure. This type of dromion solution is driven by one curve soliton, N I  line solitons 
parallel to the x-axis and M non-waving line and N waving line solitons parallel to the 
y-axis. All the non-waving and waving line solitons which are parallel to the y-axis and 
the curve soliton move in the x direction at different velocities, while the N I  line solitons 
which are parallel to the x-axis are still in the y direction, so only the dromions located at 
the same y level can interact with each other. 

The rich structures of the multi-dromion solution (13) are different from the known 
traditional dromions such as those in the DS and KP equations. The multi-dromions of the 
(2fl)-dimensional KdV equation ( 1 )  obtained by RL are also different fromequation (13). In 
other words, the multi-dromion solution shown by equation (13) is not included in the multi- 
dromion solutions obtained by RL [8], neither have the multi-dromion solutions obtained by 
RL been included in equation (13). To obtain the RL result, we have to consider @(') shown 
by equation (9) for arbitrary N with kj being constants: 

N 
@(I) = x[exp(kjx - k;t +gj(y))l+ h(x;  i) (23) 

j = I  

where h = cy=, hj. Substituting (23) into (7) etc, we find that if we restrict all gj to have 
the same form except for some constants: 

gj(y) = g(y) + Cj ( j  = 1,2, . . . , N ,  Cj = constants) (24) 

and h(x, t )  is any solution of the linear equation 

N N 

j=1  j= I 
(h, + h d  exp(kjx - k j t  + Cj) + 3 c k j ( k j h x  - h,) exp(kjx - k:t + Cj) = 0 (25) 

q5(j) for j >, 2 can all be treated as zero again. Correspondingly, substituting equation (23) 
with (24) and (25) into (4), we obtain a more generalized multi-dromion solution. 

(v) Generalized multi-dromion solution. 

where 

5; = kjx - kjt + g(y) + Cj. (27) 

This type of multi-dromion solution possesses much more abundant structures than that of 
the first type. In fact, the first type of multi-dromion solution (13) is only a special case 
of (26) for N = 1. From (26) we know that generally, multi-dromions may be driven by 
many line ghost solitons (both parallel to the x-axis and y-axis) and many curved line ghost 
solitons. 
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Now if we take some further restrictions on (26), we would get the dromion solutions 

N = 2 k2 = Cz~= 0 g(y) = l l y  + c2 CI = cI +In K (28) 

studied by RL [SI. For instance, taking 

and 

h(x, t )  = exp(k1x - k:t + CI) 
in (26), the RL (1,l) dromion solution [SI 

(30) 
%111(1 -K)exp(k ix+l~y-k : t+c l  +CZ) 

(1 + e x p ( k ~ x - k ~ t + c ~ ) + e x p ( l i y + c ~ ) + K e x p ( k l x + l l y - k ~ t + c l  +c2))* 
U =  

follows immediately. Similarly. inserting the special form of (26) for 

and 

h(x, t )  = exp(k1x - k:t + CI) + exp(k2x - k:t + c3) (32) 
into (26) leads to the RL (2, 1) dromion [SI. 

the final result @(I) is still red thanks to 

exp((P + iQ)x - (P + iQ)3t +g(y ) )  +exp((P - iQ)x - (P - iQ)’t +g(y)) 

being a real function. That is to say, the multi-dromion (26) with (25) can be rewritten 
equivalently as 

Finally, we would like to point out that kj in (23) may be chosen as complex such that 

= 2cos(Qx - (3P2Q - Q3)t)exp(Px - ( P 3  - 3PQ’)t +g(y) )  (33) 

U = -zaIa,in@ (34) 

(35) 
N M’ 

@ = 1 + h(x, t)  + c e x p c j  + CAj case, expqj 
j=l j=l 

with 

{j = kjx - k j t  + g(y) + Cj, 

qj = Qjx - (Qj) - 3QjPf)t + g ( ~ )  

e, = P ~ X  - (3e;pj - ~ j ’ ) t  + qj 

(36) 
and the h(x ,  t )  equation should be modified to 

M 

+3xAj( (h , (Qj-P; )  -h,,Qj)cosej 

-(2PjQjh, -Pjh,,)sinej)expqlj = O  

,= I  

(37) 
where 

q i j  = Qjx - (Q,’-3QjP;)t. (38) 3 t i j  = kjx - kjt + C, 

In summary, we have obtained many types of new dromion solutions for the (2 + 1)- 
dimensional KdV equation (1) by solving the general solutions with an arbitrary function for 
the (2+ 1)-dimensional bilinear KdV equation. The dromions can be driven not only by some 
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perpendicular line ghost solitons but also by some non-perpendicular line and curved line 
ghost solitons. The dromions can also possess some quite free shapes. For instance, they 
may decay extremely rapidly or much slower than the exponentially decayed soliton in the 
y direction because an arbitrary function is included in the general dromion solution. The 
dromions may also be waving in the x direction due to some types of exponentially decayed 
waving line ghost solitons also being included in the general solution. A similar dromion 
structure with quite a free shape is also found for the breaking soliton equation [lo] where 
the dromions exist for the potential instead of the original physical field [ll, 101. In fact, 
because all the known high dimensional integrable models possess KaoMoody-Virasoro 
type Lie symmetry structures with many arbitrary functions, we firmly believe that some 
of the properties of dromions revealed here, such as possessing quite free shape in one or 
more directions and being driven by curved line ghost solitons etc, can exist for all higher 
dimensional integrable models or their proper potential forms. A study to find dromions 
driven by curved line ghost solitons for some well known (2  + 1)-dimensional physically 
significant integrable models such as the DS and KP equations are in progress. It should be 
noted that the exact closed form for the multi-dromion solution of the (7. + 1)-dimensional 
KdV equation (1) with more than one arbitrary functions of y has not yet been found and 
the deeper structures of the dromion solutions obtained here are worthy of further study. 

The author would like to thank Professor Abdus Salam, the International Atomic Energy 
Agency and UNESCO for hospitality at the International Centre for Theoretical Physics 
Trieste, where this work was done. The author would also like to thank Professors G-j Ni, 
G-x Huang and S-q Chen for helpful discussions. This work was partially supported by the 
National Natural Science Foundation of China. 
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